Math 562 Professor Donnelly

- 1. Give an example to show that a closed connected submanifold of a connected manifold does not necessarily carry the relative topology.
- 2. Show that $G\ell(n, C)$ is connected.
- 3. Let $X = F\partial_x + G\partial_y$ be a C^{∞} vector field defined on all of R^2 and suppose that there is a constant K such that $|F| + |G| \le K$. Show that X is complete. Is this a necessary condition for completeness?
- 4. Find a vector field \vec{V} such that curl $\vec{V} = y\vec{i} + z\vec{j} + x\vec{k}$.
- 5. Prove that the set of all 3×3 matrices of the form $\begin{pmatrix} 1 & a_{12} & a_{13} \\ 0 & 1 & a_{23} \\ 0 & 0 & 1 \end{pmatrix}$ is a Lie group.
- 6. Show that $\exp: \mathfrak{g} \to G$ is 1-1 and onto, where G is the Lie group of Problem 5.
- 7. Let M be a smooth manifold and B a closed subset of M. Show that there is a continuous function $\psi: M \to R$ that is smooth and positive on M B and zero on B.
- 8. If $\pi: M \to N$ is a submersion and X is a vector field on N, show that there is a smooth vector field on M that is π -related to X. Is it unique?
- 9. Show that the tangent bundle of S^3 is diffeomorphic to $S^3 \times R^3$.
- 10. Find the area inside the loop of Descartes' folium, $0 \le t < \infty$,

$$x = \frac{t}{1+t^3}$$
 , $y = \frac{t^2}{1+t^3}$